Neuro-Genetic System for DAX Index Prediction

نویسندگان

  • Marcin Jaruszewicz
  • Jacek Mańdziuk
چکیده

The task of stock index prediction is presented in this paper. The data is gathered at the target stock market (DAX) and two other markets (KOSPI and DJIA). The data contains not only raw numerical values from the markets but also indicators pre-processed in terms of technical analysis, i.e. oscillators and patterns. Statistical analysis and the genetic algorithm are used to create the proper sequence of inputs from all available variables. Selected data is input to a neural network trained with backpropagation with momentum. The prediction goal is the next day’s closing value of German stock market index DAX with consideration of Korean and USA stock markets’ indexes. The prediction is performed within a tight time-window in order to protect the model against changing relationships between variables. For each time-window the best neural network is evolved and applied. The evaluation is repeated for every time-window in order to discover a new set of proper

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of International Stock Markets Based on Hybrid Intelligent Systems

This paper compares the accuracy of three hybrid intelligent systems in forecasting ten international stock market indices; namely the CAC40, DAX, FTSE, Hang Seng, KOSPI, NASDAQ, NIKKEI, S&P500, Taiwan stock market price index, and the Canadian TSE. In particular, genetic algorithms (GA) are used to optimize the topology and parameters of the adaptive time delay neural networks (ATNN) and the t...

متن کامل

Adaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction Groundwater Quality Indices: a GIS-based Analysis

The prediction of groundwater quality is very important for the management of water resources and environmental activities. The present study has integrated a number of methods such as Geographic Information Systems (GIS) and Artificial Intelligence (AI) methodologies to predict groundwater quality in Kerman plain (including HCO3-, concentrations and Electrical Conductivity (EC) of groundwater)...

متن کامل

Prediction of Methyl Salicylate Effects on Pomegranate Fruit Quality and Chilling Injuries using Adaptive Neuro-Fuzzy Inference System and Artificial Neural Network

Adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm–artificial neural network (GA-ANN) were investigated for predicting methyl salicylate (MeSA) effects on chilling injuries and quality changes of pomegranate fruits during storage. Fruits were treated with MeSA at three concentrations(0, 0.01 and 0.1 mM) and stored under chilling temperature for 84 days. ANFIS and GA-ANN models ...

متن کامل

Adaptive Online Traffic Flow Prediction Using Aggregated Neuro Fuzzy Approach

Short term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems. Although various methodologies have been applied to forecast traffic parameters, several researchers have showed that compared with the individual methods, hybrid methods provide more accurate results . These results made the hybrid tools and approaches a more common method for ...

متن کامل

A Novel Type-2 Adaptive Neuro Fuzzy Inference System Classifier for Modelling Uncertainty in Prediction of Air Pollution Disaster (RESEARCH NOTE)

Type-2 fuzzy set theory is one of the most powerful tools for dealing with the uncertainty and imperfection in dynamic and complex environments. The applications of type-2 fuzzy sets and soft computing methods are rapidly emerging in the ecological fields such as air pollution and weather prediction. The air pollution problem is a major public health problem in many cities of the world. Predict...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006